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 This study is expected to contribute to the health sector, specifically to describe the 
dynamics of the measles spread through the models that have been analyzed. One of the 
factors that became the focus of this study was reviewing the influence of population 
density on measles spread. The initial step formulated the model and then determined the 

primary reproduction number      and analyzed the stability of the model equilibrium 
point. The results of the analysis of this model show that there are two conditions for the 

value of      which is a requirement that the existence of two model equilibrium points 

as well as local stability is needed, namely      and     .  When     , there 
exists a unique equilibrium point, called the non-endemic equilibrium point denoted by 

  . Conversely, when     , there are two equilibrium points, namely    and the 

endemic equilibrium point characterized by   . The results of local stability analysis show 

that when     , the equilibrium point    is stable asymptotic locally. It means that if 

     hold, then in a long time there will not be a spread of disease in the susceptible 
and vaccinated sub-population, or in other words, the outbreak of the disease will stop. 

Conversely, when      equilibrium point    is stable asymptotic locally. It means 

that if     , then measles disease is still in the environment for an infinite 

time with the condition of the proportions of each sub-population approach to   ,   , 

   and   .  
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INTRODUCTION 

Environmental factors can affect the spread of an illness so that they can affect public health. 

Dangerous diseases include infectious diseases. One of the problems of health in Indonesia is contagious 

diseases. Indonesia is a tropical island country because it is located in the equator area. Indonesia has a very 

high environmental temperature, so that this temperature is ideal for growing a microorganism [1]. These 

microorganisms are very small-sized viruses that can be viewed using microscope tools [2]. Measles disease 

is one of the problems in Indonesia. Measles disease is a contagious disease caused by Paramyxovirus. 

Efforts to prevent its spread can be made by giving vaccines to susceptible individuals infected with 

measles. 

In the human body and healthy animal’s inserted bacteria or pathogenic viruses that have been 

weakened is the meaning of vaccination. Vaccinations are expected to form an immune system to combat 

these pathogenic bacteria or viruses. The problem of disease spread phenomenon is often modeled in the 

form of mathematical equations, including SIR and SIRS models [3][4]. Individuals who are faced can be 

assumed as new sub-populations in the SIR model. The addition of the V (Vaccination) sub-population of 

the SIR epidemic model indicates the number of individuals who have experienced the vaccination 

process, so one of the development models of the SIR epidemic model is the SVIR epidemic model. The 

population is divided into four subpopulations, S (Susceptible), V (Vaccination), I (Infected), and R 

(Recovered) [5]. The number of individuals susceptible to disease is denoted by S (Susceptible), the 



Numerical: Jurnal Matematika dan Pendidikan Matematika, 4(2), December 2020, 67-76 
Joko Harianto, Katarina Lodia Tuturop, Venthy Angelika 

Copyright © 2020, Numerical: Jurnal Matematika dan Pendidikan Matematika  
Print ISSN: 2580-3573, Online ISSN: 2580-2437 

68 

number of individuals who have undergone a vaccination process denoted by V (Vaccination), the 

number of infected individuals denoted by I (Infected), and the number of individuals recovering from the 

disease denoted by R (Recovered). Mathematical models about the SVIR epidemic are widely discussed in 

several scientific articles, including [6],[7], [8][9], [10], [7], [11], [12],[13],[14], [15], [16], [17], [18], [19]and[20]. 

Models discussed in the article [6],[7], [8][9], [10], [7], [11], [12] and[13] is a continuous model of SIR 

epidemic with the addition of vaccination compartment. The model is then called the SVIR [13], Later 

discussed by Marentek in his thesis [14] in 2011. In the year 2014, in the article [15], Haryati applied the 

SVIR model to analyze the spread of measles disease in Semarang. In his article [17] in 2017, he discusses 

the SVIR model [13] with the addition of deadly disease assumptions. In the same year, Hidayati discussed 

the model of SVIR [13] with the addition of an event factor saturated in the population. The SVIR model 

[13] focuses on a constant number of populations until 2018; Harianto added an unconstant assumption 

of the model’s population and discussed it in the article [18]. 

Furthermore, Aryani implemented the SVIR Model [13] to analyze diphtheria disease spread in 

Indonesia [20]. Discussion of this article is a continuation of the paper [17] in 2017 Written by Harianto, et 

al. The difference of this article with previous reports is the modification of the model in adding the 

influence of density in the population. This article is expected to contribute to the health sector in 

particular to describe the dynamic spread of measles disease through models that have been analyzed. 

METHODS 

This study was conducted with a mathematical approach that refers to several references (literary studies). 

The stages in this study are as follows: 

Step 1 :  Article collection and relevant information related to measles disease (literature study), 

Step 2 :  Determination of assumptions as a reference for the restriction of problems and the process of 

drafting a measles epidemic model with various facts in a region. 

Step 3 :  Formulation of problems with mathematical descriptions of models and studies of the model. 

Step 4 :  Create the numerical simulation and its interpretation. 

RESULTS AND DISCUSSION 

Populations can be divided into four subpopulations, such as the susceptible subpopulation (S), 

sub-populations that are vaccinated (V), sub-population infected (I), and sub-population recovered (R). 

The size used for each of these sub-populations in this model is proportions. The proportion of each sub-

population will undoubtedly change or depend on time. In other words, the balance of each sub-

population is a function of time variables. Variable time is denoted by t. To solve this problem 

mathematically, letting S (t) is a proportion of the susceptible subpopulation, V (t) is a proportion of sub-

population that is vaccinated, I (t) is a proportion of sub-population infected, and R (t) is the proportion of 

sub-population recovered at the time t. It is assumed that S (t), V (t), I (t), and R (t) is differentiable of time. 

This model is formed by adding one parameter as a wide-sized area of the disease of measles populated by 

the population. These parameters are used to help analyze the population density dependence of the 

spread of measles disease dynamics. The phenomenon of spreading measles that is modeled need to be 

limited and defined by the following assumptions:   

1. The population is not constant, and the community is not closed, 

2. The birth rate is the same for each subpopulation, 

3. Individuals who are born in each subpopulation enter into susceptible sub-population, 

4. Birth rate equals death rate,  
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5. Types of disease is a deadly disease,  

6. The disease can be permanently recovered, 

7. The incubation period is relatively short,  

8. The vaccine is given to someone suspect of measles,  

9. Immunity to the disease is obtained over time, resulting in a permanent recovered,  

10. A person who has been given a vaccine can be infected with measles before gaining immunity, 

11. Contamination between infected people with susceptible people leads to the transmission of measles, 

12. The distribution of homogeneous populations across the region is not broad. 

From the assumptions outlined above, the following are given explanations of some of the notation 

used in the model. 

1) 
  

  
 = rate of susceptible sub-population, 

2) 
  

  
 = rate of vaccinated sub-population, 

3) 
  

  
 = rate of infected sub-population, 

4) 
  

  
 = rate of recovered sub-population, 

5) S = proportion of  susceptible sub-population, with      is positive for all  , 

6) V = proportion of  vaccinated sub-population, with      is positive for all  , 

7) I =  proportion of  infected sub-population, with      is positive for all  , 

8) R = proportion of  recovered sub-population, with      is positive for all  , 

9)   = Natural birth rate with   is positive, 

10)   = Transmission rate between infected sub-populations with susceptible sub-population, with   is 

positive, 

11)   = Transmission rate between infected sub-populations with vaccinated sub-population, with    is 

positive, 

12)   = Recovery rate of infectious measles, with   is positive, 

13)   = Recovery rate after being given a vaccine, with   is positive, 

14)   = Vaccine rate on susceptible sub-population, with   is positive, 

15)    Death rate of Infectious measles, with   is positive, 

16)   = area of human-populated, with   is positive. 

 The following is given a transmission diagram of the SVIR epidemic model of measles disease. 

 

 

 

 

 

 

  

 

 

Figure 1. Transfer diagram of the SVIR model for measles disease 
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Based on the SVIR transfer diagram with the assumptions given, the following are given SVIR 

models in the form of a differential equation system. 

  

  
      

   

 
    

  

  
    

    

 
                              

  

  
 

   

 
 
    

 
          

  

  
           

with initial conditions                for     and           for all non-negative  . 

 

Equilibria and Basic Reproduction Number 

Because the last equation does not affect the other equation, then the above system can be 

eliminated to: 

  

  
      

   

 
    

  

  
    

    

 
                              

  

  
 

   

 
 
    

 
          

Furthermore, the local stability analysis of the equilibria of the SVIR model is analyzed in the 

neighbourhood of the equilibria. The initial step is to determine the equilibrium point of the system (2). It 

is mentioned that the dynamics of the SVIR model has two equilibrium points i.e. the non-endemic and 

endemic equilibrium point [13]. The non-endemic equilibrium point is a representation of a state without 

being infected by an infectious environment. While the endemic equilibrium point is a representation of 

some people in the environment still infected with disease. It means that the disease will even spread 

because there are still several infected people (I is positive) for     in an environment. 

The equilibria of the system (2) obtained when 

  

  
 

  

  
 

  

  
    

Consequently: 

     
   

 
                    

   
    

 
                

   

 
 
    

 
                     

According to equation (5), we get   
  

 
 

   

 
     , then     or 

  

 
 

   

 
    , with   

     . Thus, we have two case, i.e.: 

Case 1.    , 

This case is called the necessary condition to obtain non-endemic equilibrium points. Note that: 

From Equation (3) we get             
 

   
 

From Equation (4) we get               
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Thus, the non-endemic equilibrium point is                
 

   
  

  

           
     .  

Case 2.    ,  

This case is called a necessary condition to obtain the endemic equilibrium point. We know that 

From Equation (3) we get      
   

 
          

  

           
 

From Equation (4) we get    
    

 
             

    

                      
  

 

According to equation (5), if    , then we have 

  

 
 
   

 
           

such that by substituted    and   , we get: 
  

           
 

     
                      

  
         

       
  

           
 

     
                      

  
        

If we let:  

         )   > 0 

    =          )                             

  =        )(     (     ) > 0 

  
  

             
 

    

                   
 

Then we get: 

   
      

                               

Where we have the roots of the equation (6), i. e. 

    
  

       
            

   

 

Clearly that      such that     must hold. 

So, we get the endemic equilibrium i.e.               

With    
  

           
     

    

                      
  

 and    is the positive root of equation (6). 

Basic reproduction number    be a condition for the existence of the endemic equilibrium point of the 

system (2). Basic reproduction number   can be obtained by specifying the positivity condition of the 

proportion of sub-population infected. 

Reconsider equation (6); the endemic equilibrium point is a positive root because of the equibrium 

point is the proportion of sub-populations that in real life is positive. Positive roots are only hold when 

K>1. Thus, it was concluded that the existence of the endemic equilibrium point depends on the value of 

K, therefore, the K parameter can be defined as basic reproduction number, i. e.: 

   
  

             
 

    

                   
 

Clearly that the existence of the non-endemic equilibrium points does not depend on   . Reviewed 

from the    can be concluded that if       then there exists a unique equilibrium point of system (2), 

that isthe non-endemic equilibrium point denoted by   . However, if     , then there are two 

equilibrium point of system (2), that is    and the endemic equilibrium point denoted by   . We obtain 

that 



Numerical: Jurnal Matematika dan Pendidikan Matematika, 4(2), December 2020, 67-76 
Joko Harianto, Katarina Lodia Tuturop, Venthy Angelika 

Copyright © 2020, Numerical: Jurnal Matematika dan Pendidikan Matematika  
Print ISSN: 2580-3573, Online ISSN: 2580-2437 

72 

               
  

         
  

    

                 
  
      , with    is positive root of the following 

equation 

   
      

            , 

where 

         )   > 0 

            )                             

            )(     (     ) > 0 

 

Stability Analysis 

The result of local stability analysis of the equilibrium point of the system (2) is given in the 

following theorems.  

Theorem 1.  

Define 

   
  

             
 

    

                   
 

1) If the basic reproduction number less than one       , then the non-endemic equilibrium point 

   is locally asymptotically stable. However, if the basic reproduction number more than one 

      , then the endemic equilibrium point    is not stable. 

2) The endemic equilibrium point    islocally asymptotically stable, if the basic reproduction number 

more than one       . 

Proof. 

1) The following is Jacobian matrix (linearization method) of system (2)  

         

 

 
 
 
     

  

 
  

  

 

       
   

 
 
   

 
  

 

   

 

  

 
 
   

 
       

 
 
 

 

Hence Jacobian matrix in                
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The characteristic equation of       can be written as 

                      
   
 

 
    
 

        

where: 

       < 0 

        < 0 
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Clearly that all Eigen value of       are negative when     . Consequently,    is locally asymptotically 

stable[21]. However, when      there exists positive Eigen value of       hence    is not stable.  
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1) Obviously, when     , we obtained that      hence Jacobian matrix around               can 

be written as: 

      

 

 
 
 
     

   

 
  

   

 

       
   

 

 
 
   

 

 
   

 

   
 

 

   

 
 
   

 

 
       

 
 
 

 

The element     of       ekuivalent with     
   

 
   

 

  
  and the element entri     of       
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The characteristic equation of      , that is 

      
           

where: 

   
 

  
 
   

  
   

   
  

  
 
  

     

  
 
      

  
   

   
     

   

  
 
        

    
 
   

     

    
   

We have 

         
   

    
 
             

  
 
     

   
 
           

 

  
 
     

   

  
   

Hence according to Routh-Hurwitz criterion [22],              dan           are hold, then 

all the Eigen values of       have negative real parts. So,               is locally asymptotically stable 

[21]. Therefore, the proof is complete. 

According to the results that have been obtained, the interpretation is as follows: 

1. If      and the initial condition            at the neighborhood of              , then for 

   , the solution from the system (1) will move towards the              . This means that if 

    , then for the number of susceptible, vaccinated, and infected individuals approaching 

             , Then the disease does not spread, and the number of infected sub-populations 

decreases towards zero for an indefinite period. It means that measles disease tends to disappear in 

disease. It is called stable asymptotic local around the equilibrium point              . 

2. If      and the initial condition            at the neighborhood of              , then for 

   , the solution from the system (1) will move towards the              . This means that if 

    , then Measles disease still remains in the environment for an infinite time with the value S, V, 

I approaching              . It is called stable asymptotic local around the equilibrium point 

             . 
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Interpretation of analysis results is similar to the discussion in [13], [14], [15], [16], [17], [18], [19] 
and [20] that the primary reproduction number plays an important role to know the dynamics of 
the spread of disease. However, every primary reproduction number obtained varies depending 
on the parameters of the model formed. In this discussion, the population density factor 
influences the primary reproduction number. It can be seen from the presence of the population 
density parameter that appears on the primary reproduction number. 
 
Numerical Results 

The following solutions are provided from the system (1) with a numerical approach. The approach 

is numerically given in the form of graphs of sub-population susceptible, vaccinated, infected, and 

recovered versus time. All parameter values used are estimates. The stability of the equilibrium point of the 

system (1) is noted based on the    value, which is      and     . In this simulation, three broad-

size areas are used to review population density influence each subpopulation's proportion. The assumed 

area size is 20 km2, 200 km2, and 2000 km2. 

Assumed parameter values for the case     , with                           

                    The solution of the System (1) with the given parameters presented in Figure 2. 

For a total area of 20 km2, within 0 to 5 months the proportion of the infected sub-population increased 

above 0.1 then after 5 months decreased to 0. These results are shown in Figure 2 below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Dynamics of the proportion of sub-population S, V, I and R versus time (t)   

for a total area of 20 km2 

 

The graph in Figure 3 shows a total area of 200 km2, the proportion of sub-populations 

infected from the initial state of 0.1 decreased to 0. The chart also applies to an area of 2000 km2; 

the infected population has decreased to 0. The three-area comparison of the region shows that 

the area is an influential factor in the dynamic spread of measles disease. The more dense the area 

then the proportion of the infected subpopulation will increase to a specific time limit. Further, 

the proportion of sub-population infected decreases until the spread will stop for an infinite time. 
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While in the area with an area above 200 km2, the proportion of the infected sub-population will 

continue to decline, even the spread will cease for an infinite time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.Dynamics of the proportion of sub-population S, V, I and R versus time (t)  

for a total area of 200 km2 dan 2000 km2 

CONCLUSIONS 

The analysis results of this model indicate that there are two case    value, which is    

  and     . Each case of the    value determines the local stability analysis of the equilibrium 

point of the model. Furthermore, the    parameter is a necessary condition for the existence of 

equilibrium point and stability analysis of the model. When     , there only a unique 

equilibrium point called the non-endemic equilibrium point denoted by   . However, when    

  there are two equilibrium point, namely    and the endemic equilibrium point denoted by 

   The results of local stability analysis show that when     , then the non-endemic 

equilibrium point    is locally asymptotically stable. This means that if      hold, then measles 

disease does not spread, and the number of infected subpopulations decreases towards zero. This 

means that the spread of measles disease will stop. However,    is locally asymptotically stable 

when     . It This means that if     , then measles disease is still in the environment for an 

infinite time. The proportion of each sub-population in this situation is          dan   .The area 

inhabited by the population is an influential factor in the dynamic spread of measles disease. The 

more dense the residential areas of the population then the proportion of infected sub 

populations will increase to a certain time limit. Furthermore, the proportion of sub-population is 

infected down until the spread will stop for infinite time. In the area above 200 km2, the 

proportion of the infected sub-population will continue to decline even the spread will stop for 

an infinite time. 
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