Do Social Influence and Rationalization Determine the Use of Artificial Intelligence-ChatGPT in Higher Education Learning?
DOI:
https://doi.org/10.25217/ji.v9i2.4858Keywords:
Artificial Intelligence, Technology Acceptance Model, ChatGPT in Learning, Social InfluenceAbstract
The use of AI-ChatGPT in education is a compelling topic, although research is limited due to its recent rapid development, necessitating further studies. This quantitative study used descriptive statistical analysis and involved 190 active students using ChatGPT in Indonesian higher education students. Purposive sampling was used for data collection via an online questionnaire. The gathered data were processed through partial least square technique. Purposive sampling was used for data collection via an online questionnaire. Validity was tested with Convergent and Discriminant Validity, and reliability with Cronbach's Alpha and Composite Reliability. The finding reveal that ChatGPT Use influence by social influence, rationalization, perceived usefulness, and perceived ease of use. Similarly, social influence significantly influences on perceived usefulness and perceived ease of use. Rationalization also significantly influences on perceived usefulness and perceived ease of use. Social Influence and Rationalization increase ChatGPT use in learning, with perceived Usefulness mediating the relationship and perceived ease of use also mediating it.
References
Abbasi, G. A., Sandran, T., Ganesan, Y., & Iranmanesh, M. (2022). Go cashless! Determinants of continuance intention to use E-wallet apps: A hybrid approach using PLS-SEM and fsQCA. Technology in Society, 68(June 2021), 101937. https://doi.org/10.1016/j.techsoc.2022.101937
Abdul-Halim, N.-A., Vafaei-Zadeh, A., Hanifah, H., Teoh, A. P., & Nawaser, K. (2022). Understanding the determinants of e-wallet continuance usage intention in Malaysia. Quality & Quantity, 56(5), 3413–3439. https://doi.org/10.1007/s11135-021-01276-7
Alalwan, A. A., Dwivedi, Y. K., & Rana, N. P. (2017). Factors influencing adoption of mobile banking by Jordanian bank customers: Extending UTAUT2 with trust. International Journal of Information Management, 37(3), 99–110. https://doi.org/10.1016/j.ijinfomgt.2017.01.002
Alshurafat, H., Al Shbail, M. O., Hamdan, A., Al-Dmour, A., & Ensour, W. (2023). Factors affecting accounting students’ misuse of chatgpt: an application of the fraud triangle theory. Journal of Financial Reporting and Accounting. https://doi.org/10.1108/JFRA-04-2023-0182
Alshurideh, M., Al Kurdi, B., Salloum, S. A., Arpaci, I., & Al-Emran, M. (2023). Predicting the actual use of m-learning systems: a comparative approach using PLS-SEM and machine learning algorithms. Interactive Learning Environments, 31(3), 1214–1228. https://doi.org/10.1080/10494820.2020.1826982
Baron, R. M., & Kenny, D. A. (1986). The moderator–mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology, 51(6), 1173–1182. https://doi.org/10.1037/0022-3514.51.6.1173
Belanche, D., Casaló, L. V., & Flavián, C. (2019). Artificial Intelligence in FinTech: understanding robo-advisors adoption among customers. Industrial Management & Data Systems, 119(7), 1411–1430. https://doi.org/10.1108/IMDS-08-2018-0368
Bentler, P. M., & Bonett, D. G. (1980). Significance tests and goodness of fit in the analysis of covariance structures. Psychological Bulletin, 88(3), 588–606. https://doi.org/10.1037/0033-2909.88.3.588
Bhukya, R., & Paul, J. (2023). Social influence research in consumer behavior: What we learned and what we need to learn? – A hybrid systematic literature review. Journal of Business Research, 162(May 2021), 113870. https://doi.org/10.1016/j.jbusres.2023.113870
Boubker, O. (2024). From chatting to self-educating: Can AI tools boost student learning outcomes? Expert Systems with Applications, 238(PA), 121820. https://doi.org/10.1016/j.eswa.2023.121820
Chen, Y., Jensen, S., Albert, L. J., Gupta, S., & Lee, T. (2023). Artificial Intelligence (AI) Student Assistants in the Classroom: Designing Chatbots to Support Student Success. Information Systems Frontiers, 25(1), 161–182. https://doi.org/10.1007/s10796-022-10291-4
Choi, E. P. H., Lee, J. J., Ho, M.-H., Kwok, J. Y. Y., & Lok, K. Y. W. (2023). Chatting or cheating? The impacts of ChatGPT and other artificial intelligence language models on nurse education. Nurse Education Today, 125, 105796. https://doi.org/10.1016/j.nedt.2023.105796
Cooper, G. (2023). Examining Science Education in ChatGPT: An Exploratory Study of Generative Artificial Intelligence. Journal of Science Education and Technology, 32(3), 444–452. https://doi.org/10.1007/s10956-023-10039-y
Davis, F. D. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319. https://doi.org/10.2307/249008
DeLone, W. H., & McLean, E. R. (2003). The DeLone and McLean model of information systems success: A ten-year update. Journal of Management Information Systems, 19(4), 9–30. https://doi.org/10.1080/07421222.2003.11045748
Dwivedi, Y. K., Kshetri, N., Hughes, L., Slade, E. L., Jeyaraj, A., Kar, A. K., Baabdullah, A. M., Koohang, A., Raghavan, V., Ahuja, M., Albanna, H., Albashrawi, M. A., Al-Busaidi, A. S., Balakrishnan, J., Barlette, Y., Basu, S., Bose, I., Brooks, L., Buhalis, D., … Wright, R. (2023). “So what if ChatGPT wrote it?” Multidisciplinary perspectives on opportunities, challenges and implications of generative conversational AI for research, practice and policy. International Journal of Information Management, 71(March). https://doi.org/10.1016/j.ijinfomgt.2023.102642
Fatamwati, E. (2015). Technology Acceptance Model (TAM) untuk Menganalisis Penerimaan terhadap Sistem Informasi Perpustakaan. Jurnal Iqra’, 9(1), 1–13. https://media.neliti.com/media/publications/196942-ID-technology-acceptance-model-tam-untuk-me.pdf
Free, C. (2015). Looking through the fraud triangle: A review and call for new directions. Meditari Accountancy Research, 23(2), 175–196. https://doi.org/10.1108/MEDAR-02-2015-0009
Ghozali, I. (2014). Structural Equation Modeling Metode Alternatif dengan Partial Least Squares (PLS).
Hair, J. F., Sarstedt, M., Hopkins, L., & Kuppelwieser, V. G. (2014). Partial least squares structural equation modeling (PLS-SEM): An emerging tool in business research. European Business Review, 26(2), 106–121. https://doi.org/10.1108/EBR-10-2013-0128
Haryono, S. (2016). Metode SEM Untuk Penelitian Manajemen dengan AMOS 22.00, LISREL 8.80 dan Smart PLS 3.0. Intermedia Personalia Utama.
Hayes, A. F. (2009). Beyond Baron and Kenny: Statistical mediation analysis in the new millennium. Communication Monographs, 76(4), 408–420. https://doi.org/10.1080/03637750903310360
Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6(1), 1–55. https://doi.org/10.1080/10705519909540118
Huallpa, J. J., Pedro, J., Arocutipa, F., Panduro, W. D., Huete, L. C., Antonio, F., Limo, F., Herrera, E. E., Arturo, R., Callacna, A., Flores, A. A., Ángel, M., Romero, M., Quispe, I. M., & Hernández, F. A. (2023). Exploring the ethical considerations of using Chat GPT in university education. Periodicals of Engineering and Natural Sciences, 11(4), 105–115.
Hwang, G.-J., Xie, H., Wah, B. W., & Gašević, D. (2020). Vision, challenges, roles and research issues of Artificial Intelligence in Education. Computers and Education: Artificial Intelligence, 1, 100001. https://doi.org/10.1016/j.caeai.2020.100001
Islam, A. K. M. N. (2013). Investigating e-learning system usage outcomes in the university context. Computers & Education, 69, 387–399. https://doi.org/10.1016/j.compedu.2013.07.037
Lameras, P., & Arnab, S. (2021). Power to the Teachers: An Exploratory Review on Artificial Intelligence in Education. Information, 13(1), 14. https://doi.org/10.3390/info13010014
Lin, C., Shih, H., & Sher, P. J. (2007). Integrating technology readiness into technology acceptance: The TRAM model. Psychology & Marketing, 24(7), 641–657. https://doi.org/10.1002/mar.20177
Martínez-Gómez, M., Bustamante, E., & Berna-Escriche, C. (2022). Development and Validation of an E-Learning Education Model in the COVID-19 Pandemic: A Case Study in Secondary Education. Sustainability, 14(20), 13261. https://doi.org/10.3390/su142013261
Palal, D., Ghonge, S., Jadav, V., & Rathod, H. (2023). ChatGPT: A Double-Edged Sword? Health Services Insights, 16. https://doi.org/10.1177/11786329231174338
Peng, D. X., & Lai, F. (2012). Using partial least squares in operations management research: A practical guideline and summary of past research. Journal of Operations Management, 30(6), 467–480. https://doi.org/10.1016/j.jom.2012.06.002
Podsakoff, P. M., MacKenzie, S. B., Lee, J. Y., & Podsakoff, N. P. (2003). Common Method Biases in Behavioral Research: A Critical Review of the Literature and Recommended Remedies. Journal of Applied Psychology, 88(5), 879–903. https://doi.org/10.1037/0021-9010.88.5.879
Popenici, S. A. D., & Kerr, S. (2017). Exploring the impact of artificial intelligence on teaching and learning in higher education. Research and Practice in Technology Enhanced Learning, 12(1), 22. https://doi.org/10.1186/s41039-017-0062-8
Queiroz, M. M., Fosso Wamba, S., De Bourmont, M., & Telles, R. (2021). Blockchain adoption in operations and supply chain management: empirical evidence from an emerging economy. International Journal of Production Research, 59(20), 6087–6103. https://doi.org/10.1080/00207543.2020.1803511
Quintans-Júnior, L. J., Gurgel, R. Q., Araújo, A. A. de S., Correia, D., & Martins-Filho, P. R. (2023). ChatGPT: the new panacea of the academic world. Revista Da Sociedade Brasileira de Medicina Tropical, 56. https://doi.org/10.1590/0037-8682-0060-2023
Saif, N., Khan, S. U., Shaheen, I., ALotaibi, F. A., Alnfiai, M. M., & Arif, M. (2024). Chat-GPT; validating Technology Acceptance Model (TAM) in education sector via ubiquitous learning mechanism. Computers in Human Behavior, 154, 108097. https://doi.org/10.1016/j.chb.2023.108097
Shen, S., Xu, K., Sotiriadis, M., & Wang, Y. (2022). Exploring the factors influencing the adoption and usage of Augmented Reality and Virtual Reality applications in tourism education within the context of COVID-19 pandemic. Journal of Hospitality, Leisure, Sport and Tourism Education, 30(January), 100373. https://doi.org/10.1016/j.jhlste.2022.100373
Sugiarto, S., & Suhono, S. (2023). Studi Kasus Penggunaan ChatGPT pada Mahasiswa di PTKI Lampung. Jurnal Al-Qiyam, 4(2), 110-119. https://doi.org/10.33648/alqiyam.v4i2.318
Suhono. (2023). An Assistance of Islamic University EFL Students through Artificial Intelligence (AI) Machine Translation and Writing Tools. International Journal of Community Engagement Payungi, 3(2), 74–90. https://doi.org/10.58879/IJCEP.V3I2.36
Tiwari, C. K., Bhat, M. A., Khan, S. T., Subramaniam, R., & Khan, M. A. I. (2023). What drives students toward ChatGPT? An investigation of the factors influencing adoption and usage of ChatGPT. Interactive Technology and Smart Education. https://doi.org/10.1108/ITSE-04-2023-0061
Tlili, A., Shehata, B., Adarkwah, M. A., Bozkurt, A., Hickey, D. T., Huang, R., & Agyemang, B. (2023). What if the devil is my guardian angel: ChatGPT as a case study of using chatbots in education. Smart Learning Environments, 10(1). https://doi.org/10.1186/s40561-023-00237-x
Venkatesh, Morris, Davis, & Davis. (2003). User Acceptance of Information Technology: Toward a Unified View. MIS Quarterly, 27(3), 425. https://doi.org/10.2307/30036540
Venkatesh, V., Thong, J. Y. L., & Xin Xu. (2012). Consumer Acceptance dan Use Of Information Technology : Extending The Unified Theory of Acceptance and Use of Technology. MIS Quarterly, 36(1), 157–178.
Watjatrakul, B. (2013). Intention to use a free voluntary service: The effects of social influence, knowledge and perceptions. Journal of Systems and Information Technology, 15(2), 202–220. https://doi.org/10.1108/13287261311328903
Weebb, M. (2023). 30+ ChatGPT Statistics You Need to Know Today – Trends, Usage, and Predictions. https://www.techopedia.com/chatgpt-statistics
Wulandari, R., Umar Al Faruq, A. H., Sari, Y. A., & Hidayat, R. E. (2024). Students Motivation toward the Use of Informatics Technology in Teaching English at MA Ma’arif Roudlotut Tholibin. Bulletin of Pedagogical Research, 4(2), 171-182. https://doi.org/10.51278/bpr.v4i2.1149
Zawacki-Richter, O., Marín, V. I., Bond, M., & Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education – where are the educators? International Journal of Educational Technology in Higher Education, 16(1), 39. https://doi.org/10.1186/s41239-019-0171-0
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Evamillatul Qistiyah, Muhammad Sabandi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.